Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Edith Alig, Lothar Fink and Michael Bolte*

Institut für Anorganische Chemie, J. W. GoetheUniversität Frankfurt, Marie-Curie-Straße 11, 60439 Frankfurt/Main, Germany

Correspondence e-mail:
bolte@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{Cr}-\mathrm{N})=0.004 \AA$
R factor $=0.037$
$w R$ factor $=0.073$
Data-to-parameter ratio $=15.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Hexaamminechromium(III) diaquatetrachlorosodium(I)

The title compound, hexaamminechromium(III) diaquatetrachlorosodium $(\mathrm{I}),\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{NaCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$, is composed of discrete $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ cations and $\left[\mathrm{NaCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{3-}$ anions. The Cr and Na ions are octahedrally coordinated. The crystal packing is characterized by an alternating arrangement of anions and cations and is stabilized by numerous hydrogen bonds.

Comment

The title compound, (I), is composed of discrete $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ cations and $\left[\mathrm{NaCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{3-}$ anions. Both the Cr and the Na atoms are octahedrally coordinated. The Cr^{3+} ion is bonded to six NH_{3} groups. The Na^{+}ion is coordinated by four Cl^{-}ions in a square equatorial plane. Two water molecules occupying the axial positions complete its coordination sphere. The crystal packing is characterized by an alternating arrangement of anions and cations and is stabilized by numerous hydrogen bonds.

Experimental

0.5 g Na was dissolved in 300 ml of liquid NH_{3}. To the blue solution was added 0.2 g of anhydrous FeCl_{2}. After obtaining a colourless solution, small portions of a total of $3.0 \mathrm{~g} \mathrm{CrCl}_{3}$ were added while stirring at 241 K . After heating to room temperature very slowly and evaporation, crystals of (I) were obtained.

Crystal data

$\mathrm{H}_{18} \mathrm{CrN}_{6}{ }^{3+} \cdot \mathrm{H}_{4} \mathrm{Cl}_{4} \mathrm{NaO}_{2}{ }^{3-}$
$M_{r}=355.03$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=7.0596$ (3) \AA
$b=9.1575$ (4) \AA
$c=22.6310(10) \AA$
$V=1463.06(11) \AA^{3}$
$Z=4$
$D_{x}=1.612 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Siemens SMART CCD three-circle	2941 independent reflections
diffractometer	2340 reflections with $I>2 \sigma(I)$
ω scans	$R_{\text {int }}=0.062$
Absorption correction: multi-scan	$\theta_{\max }=27.1^{\circ}$
$(S A D A B S ;$ Sheldrick, 1996)	$h=-9 \rightarrow 8$
$T_{\min }=0.624, T_{\max }=0.914$	$k=-10 \rightarrow 10$
14937 measured reflections	$l=-27 \rightarrow 27$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.073$
$S=1.06$
2941 reflections
194 parameters
Only coordinates of H atoms
\quad refined
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.073$
$S=1.06$
2941 reflections
Only coordinates of H atoms refined

Mo $K \alpha$ radiation
Cell parameters from 5893 reflections
$\theta=1-25^{\circ}$
$\mu=1.53 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Plate, orange
$0.34 \times 0.12 \times 0.06 \mathrm{~mm}$

2941 independent reflections
2340 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.062$
$h=-9 \rightarrow 8$
$k=-10 \rightarrow 10$
$l=-27 \rightarrow 27$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0304 P)^{2}\right. \\
& \quad+0.4093 P] \\
& \quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.41 \mathrm{e} \AA \\
& \Delta \rho_{\min }=-0.43 \text { e } \AA^{-3} \\
& \text { Absolute structure: Flack }(1983), \\
& \quad 1188 \text { Friedel pairs } \\
& \text { Flack parameter }=0.18(3)
\end{aligned}
$$

Received 14 October 2003 Accepted 20 October 2003 Online 31 October 2003

Figure 1
Perspective view of the cation of the title compound with the atom numbering. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
Perspective view of the anion of the title compound with the atom numbering. Displacement ellipsoids are drawn at the 50% probability level.

Figure 3
Packing diagram of the title compound, projected onto the $a c$ plane. The cations are drawn as magenta and the anions as blue octahedra.

Table 1
Selected geometric parameters (A).

$\mathrm{Cr} 1-\mathrm{N} 1$	$2.069(4)$	$\mathrm{Na} 1-\mathrm{O} 1$	$2.316(4)$
$\mathrm{Cr} 1-\mathrm{N} 3$	$2.072(4)$	$\mathrm{Na} 1-\mathrm{O} 2$	$2.345(4)$
$\mathrm{Cr} 1-\mathrm{N} 4$	$2.072(4)$	$\mathrm{Na} 1-\mathrm{Cl} 4$	$2.797(2)$
$\mathrm{Cr} 1-\mathrm{N} 2$	$2.079(4)$	$\mathrm{Na} 1-\mathrm{Cl} 2$	$2.824(2)$
$\mathrm{Cr} 1-\mathrm{N} 6$	$2.082(3)$	$\mathrm{Na} 1-\mathrm{Cl} 3$	$2.8690(17)$
$\mathrm{Cr} 1-\mathrm{N} 5$	$2.087(3)$	$\mathrm{Na} 1-\mathrm{Cl} 1$	$2.9318(17)$

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{Cl} 1{ }^{\text {i }}$	0.881 (10)	2.467 (15)	3.325 (4)	165 (4)
$\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{Cl} 4^{\text {ii }}$	0.874 (10)	2.71 (3)	3.415 (4)	139 (3)
$\mathrm{N} 1-\mathrm{H} 1 C \cdots \mathrm{O} 1^{\text {iii }}$	0.878 (10)	2.66 (3)	3.326 (6)	133 (3)
$\mathrm{N} 1-\mathrm{H} 1 C \cdots \mathrm{Cl} 1^{\text {iii }}$	0.878 (10)	2.79 (3)	3.525 (4)	142 (3)
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{Cl} 1^{\text {iii }}$	0.878 (10)	2.92 (3)	3.586 (4)	134 (3)
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{Cl} 4^{\text {iii }}$	0.878 (10)	2.77 (3)	3.434 (4)	134 (4)
$\mathrm{N} 2-\mathrm{H} 2 B \cdots \mathrm{Cl} 1^{\text {iv }}$	0.873 (10)	2.426 (14)	3.282 (4)	167 (4)
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{C} \cdots \mathrm{Cl}^{\text {v }}$	0.875 (10)	2.79 (3)	3.486 (4)	138 (3)
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{C} \cdots \mathrm{O}^{\text {v }}$	0.875 (10)	2.58 (3)	3.278 (5)	137 (3)
$\mathrm{N} 3-\mathrm{H} 3 A \cdots \mathrm{Cl}^{v}$	0.877 (10)	2.53 (2)	3.329 (4)	151 (4)
$\mathrm{N} 3-\mathrm{H} 3 B \cdots \mathrm{Cl}^{\text {vi }}$	0.873 (10)	2.487 (14)	3.344 (4)	167 (4)
$\mathrm{N} 3-\mathrm{H} 3 \mathrm{C} \cdots \mathrm{Cl} 2^{\text {iv }}$	0.872 (10)	2.471 (17)	3.306 (3)	161 (4)
$\mathrm{N} 4-\mathrm{H} 4 A \cdots \mathrm{Cl} 3^{\text {ii }}$	0.875 (10)	2.443 (16)	3.291 (4)	164 (4)
$\mathrm{N} 4-\mathrm{H} 4 B \cdots \mathrm{Cl}^{\text {vi }}$	0.877 (10)	2.74 (3)	3.450 (4)	139 (4)
$\mathrm{N} 4-\mathrm{H} 4 \mathrm{C} \cdots \mathrm{O}^{2}$	0.876 (10)	2.26 (2)	3.064 (5)	153 (4)
$\mathrm{N} 5-\mathrm{H} 5 B \cdots \mathrm{Cl}^{\text {v }}$	0.880 (10)	2.69 (2)	3.513 (4)	156 (4)
$\mathrm{N} 5-\mathrm{H} 5 A \cdots \mathrm{Cl} 2^{\text {vi }}$	0.875 (10)	2.589 (19)	3.406 (3)	156 (4)
$\mathrm{N} 5-\mathrm{H} 5 \mathrm{C} \cdots \mathrm{Cl} 4^{\text {ii }}$	0.877 (10)	2.575 (19)	3.392 (3)	156 (3)
$\mathrm{N} 6-\mathrm{H} 6 A \cdots \mathrm{Cl} 1^{\text {iii }}$	0.883 (10)	2.573 (16)	3.424 (3)	162 (3)
N6-H6B $\cdots \mathrm{Cl1}{ }^{\text {i }}$	0.876 (10)	2.74 (2)	3.558 (4)	156 (4)
$\mathrm{N} 6-\mathrm{H} 6 \mathrm{C} \cdots \mathrm{Cl} 2^{\text {iv }}$	0.874 (10)	2.84 (3)	3.539 (3)	138 (3)
$\mathrm{O} 1-\mathrm{H} 1 D \cdots \mathrm{Cl} 4^{\text {vii }}$	0.836 (10)	2.360 (11)	3.195 (3)	177 (6)
$\mathrm{O} 1-\mathrm{H} 1 E \cdots \mathrm{Cl} 4^{\text {viii }}$	0.837 (10)	2.312 (17)	3.131 (4)	167 (5)
$\mathrm{O} 2-\mathrm{H} 2 \mathrm{D} \cdots \mathrm{Cl} 3^{\text {ix }}$	0.840 (10)	2.354 (15)	3.179 (3)	167 (4)
$\mathrm{O} 2-\mathrm{H} 2 E \cdots \mathrm{Cl} 2^{\mathrm{x}}$	0.836 (10)	2.51 (3)	3.269 (4)	151 (4)

Symmetry codes: (i) $\frac{1}{2}+x, \frac{3}{2}-y, 1-z$; (ii) $\frac{1}{2}+x, \frac{1}{2}-y, 1-z$; (iii) $x, y, 1+z$; (iv) $x-\frac{1}{2}, \frac{3}{2}-y, 1-z$; (v) $x-\frac{1}{2}, \frac{1}{2}-y, 1-z$; (vi) $\frac{3}{2}-x, 1-y, \frac{1}{2}+z$; (vii) $1+x, y, z$; (viii) $\frac{1}{2}+x, \frac{1}{2}-y,-z$; (ix) $1-x, \frac{1}{2}+y, \frac{1}{2}-z$; (x) $x-1, y, z$.

H atoms were located in a difference map and refined with fixed individual displacement parameters $\left[U_{\mathrm{iso}}(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{N}, \mathrm{O})\right]$. The $\mathrm{O}-\mathrm{H}$ bond lengths were restrained to 0.84 (1) \AA and the $\mathrm{N}-\mathrm{H}$ bond lengths to 0.88 (1) \AA.

Data collection: SMART (Siemens, 1995); cell refinement: SMART; data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991); software used to prepare material for publication: SHELXL97.

References

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

